Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339194

RESUMO

Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-ß (TGF-ß) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.


Assuntos
Antineoplásicos , Benzamidas , Lesão Pulmonar , Fibrose Pulmonar , Pirazóis , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Ácido Clorídrico/toxicidade , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais/metabolismo , Antineoplásicos/efeitos adversos , Gefitinibe/efeitos adversos , Proteínas de Choque Térmico HSP90/metabolismo
2.
Front Pharmacol ; 13: 1034464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419627

RESUMO

Exposure to high concentrations of hydrochloric acid (HCl) can lead to severe acute and chronic lung injury. In the aftermath of accidental spills, victims may be treated for the acute symptoms, but the chronic injury is often overlooked. We have developed a mouse model of acute and chronic lung injury, in which the peak of acute lung injury occurs on the day 4 after HCl exposure. We have also demonstrated that HSP90 inhibitors are effective antidotes when administered starting 24 h after HCl. In this study we examined the hypothesis that the novel oral HSP90 inhibitor TAS-116 can effectively ameliorate HCl-induced lung injury even when treatment starts at the peak of the acute injury, as late as 96 h after HCl. C57BI/6J mice were intratracheally instilled with 0.1N HCl. After 24 or 96 h, TAS-116 treatment began (3.5, 7 or 14 mg/kg, 5 times per week, p. o.) for either 2,3 or 4 or weeks. TAS-116 moderated the HCl-induced alveolar inflammation, as reflected in the reduction of white blood cells and total protein content in bronchoalveolar lavage fluid (BALF), overexpression of NLRP3 inflammasome, and inhibited the activation of pro-fibrotic pathways. Furthermore, TAS-116 normalized lung mechanics and decreased the deposition of extracellular matrix proteins in the lungs of mice exposed to HCl. Delayed and shortened treatment with TAS-116, successfully blocked the adverse chronic effects associated with acute exposure to HCl.

3.
Cells ; 11(6)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326496

RESUMO

Hydrochloric acid (HCl) exposure causes asthma-like conditions, reactive airways dysfunction syndrome, and pulmonary fibrosis. Heat Shock Protein 90 (HSP90) is a molecular chaperone that regulates multiple cellular processes. HSP90 inhibitors are undergoing clinical trials for cancer and are also being studied in various pre-clinical settings for their anti-inflammatory and anti-fibrotic effects. Here we investigated the ability of the heat shock protein 90 (HSP90) inhibitor AT13387 to prevent chronic lung injury induced by exposure to HCl in vivo and its protective role in the endothelial barrier in vitro. We instilled C57Bl/6J mice with 0.1N HCl (2 µL/g body weight, intratracheally) and after 24 h began treatment with vehicle or AT13387 (10 or 15 mg/kg, SC), administered 3×/week; we analyzed histological, functional, and molecular markers 30 days after HCl. In addition, we monitored transendothelial electrical resistance (TER) and protein expression in a monolayer of human lung microvascular endothelial cells (HLMVEC) exposed to HCl (0.02 N) and treated with vehicle or AT13387 (2 µM). HCl provoked persistent alveolar inflammation; activation of profibrotic pathways (MAPK/ERK, HSP90); increased deposition of collagen, fibronectin and elastin; histological evidence of fibrosis; and a decline in lung function reflected in a downward shift in pressure-volume curves, increased respiratory system resistance (Rrs), elastance (Ers), tissue damping (G), and hyperresponsiveness to methacholine. Treatment with 15 mg/kg AT13387reduced alveolar inflammation, fibrosis, and NLRP3 staining; blocked activation of ERK and HSP90; and attenuated the deposition of collagen and the development of chronic lung injury and airway hyperreactivity. In vitro, AT13387 prevented HCl-induced loss of barrier function and AKT, ERK, and ROCK1 activation, and restored HSP70 and cofilin expression. The HSP90 inhibitor, AT13387, represents a promising drug candidate for chronic lung injury that can be administered subcutaneously in the field, and at low, non-toxic doses.


Assuntos
Antineoplásicos , Lesão Pulmonar , Fibrose Pulmonar , Animais , Antineoplásicos/farmacologia , Benzamidas , Colágeno/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ácido Clorídrico/efeitos adversos , Inflamação/patologia , Isoindóis , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...